Ordovician Fossils In The Toquima Range, Nevada

Take a virtual field trip to two Ordovician-age fossil localities in Nevada

Field Trip To The Toquima Range, Nevada

Scattered across the pristine isolation of Nevada are many productive Ordovician-age fossil localities roughly 490 to 440 million years old, and two of the more significant sites can be visited in the Toquima Range. At what many fossil seekers call Ordovician Canyon, for example, paleontology enthusiasts can find a plethora of well preserved invertebrate animal remains from the Middle Ordovician Antelope Valley Limestone, including silicified brachiopods, bryozoans, sponges, cystoid echinoderms,conodonts, trilobites, gastropods, pelecypods, cephalopods and ostracodes.

A second site paleontology seekers refer to as Graptolite Summit gives collectors a chance to find a fossil type many hobbyists rarely see outside of a textbook or popular guide to paleontology--the intricately designed graptolite, a colonial organism most often referred to as an extinct variety of hemichordate (or primitive chordate). The specimens at Graptolite Summit occur in a rock deposit called the Vinini Formation, which has been dated by geologists as Early to Late Ordovician. The Vinini is an incredibly widespread unit throughout Nevada, a dominantly siliceous assemblage of shales, siltstones, cherts and quartzites that bear sporadic occurrences of abundant graptolites. With the possible exception of the type locality (where a geologic rock formation was first named and described in the scientific literature), this particular area surrounding Graptolite Summit is probably the most intensively investigated graptolite-yielding section in all of the Vinini Formation. Over the decades it has provided professional paleontologists and amateurs alike with myriads of identifiable graptolites, in addition to common inarticulate brachiopods and carapaces belonging to a peculiar species of extinct cructacean called Caryocaris, whose oval-to D-shaped exoskeletons up to an inch across appear to be confined throughout the world to shales in which graptolites are the dominant fossil specimens preserved.

 
Click on the images for larger views. Here are two fossil-types collected from the Toquima Range, Nevada: brachiopods and a graptolite. From left to right: left--a silicified pedicle valve from the brachiopod Hesperorthis affin. H. matulina Cooper (resting on its natural limestone matrix), 10mm acrosss, from the Middle Ordovician Antelope Valley Limestone, Ordovician Canyon, Nevada; middle--an oval graptolite colony, 17mm long, called Phyllograptus anna from the Lower to Upper Ordovician Vinini Formation near Graptolite Summit, Nevada; right--a silicified pedicle valve from the brachiopod Plectorthis cf. P. perplexus (Ross), 10mm across, (still on its natural limestone matrix) from the Middle Ordovician Antelope Valley Limestone, Nevada.

Both fossil areas are easily and safely reached. Still, collectors must not be lulled into dangerous complacency. The important thing to remember is that this part of Nevada remains one of the most remote sectors in all the Great Basin. Should a genuine emergency emerge while in the deep backcountry, medical and mechanical assistance will certainly be a long time in arriving, even if your situation has been relayed to the authorities over Citizens Band Radio. For this reason, it is recommended that visitors travel to the fossiliferous regions in the Toquima Range only in a reliable four-wheel drive vehicle, obeying all of the necessary rules that apply to back country travel; carry plenty of water, emergency provisions, cold-weather clothing, spare fan belts, and medical supplies. And by all means notify the authorities in the nearest community of your whereabouts, remembering to check back in with them upon leaving the area.

The Graptolite Summit locality rests directly atop the Lower to Upper Ordovician Vinini Formation, which is locally loaded with all kinds of interesting graptolite remaims. Here in the Toquima Range the Vinini Formation has been measured by geologists at some 6,000 feet thick. It is predominantly a siliceous accumulation of thin-bedded black chert, quartzite, red to black siltstone and shale, dark limestone, and even some minor interbeds of pillow lavas, presumably formed on the ancient Ordovician ocean floor when hot magmatic extrusions came in contact with obviously much colder marine waters; identical kinds of lavas develop today in ocean waters near sites of sea-floor-spreading, where the so-called Mid-Atlantic Ridge produces new Earth crust through the upwelling of superheated magmas.

Click on the image below for a larger view. Looking northwestward from the fossil graptolite locality in the Middle to Upper Ordovician Vinini Formation near Graptolite Summit, Nevada. The pastel-colored to black shaley siltstones which sandwich a prominent bed of whitish-brown quartzite (a knob of the quartzite is visible at the extreme upper right) near Graptolite Summit furnish paleontology enthusiasts with loads of fascinating graptolite remains, an extinct variety of hemichordate that reached its zenith of adaptation in the Ordovician Period.

Most of the graptolites occur in pastel-colored shaley siltstones of the Vinini Formation. Numerous scientific crews have worked these fossiliferous siltstones in the vicinity of Graptolite Summit over the decades, periodically entrenching the thin-bedded, poorly exposed sedimentary layers to a depth of several feet in search of productive graptolite layers. Depending on the degree of erosion inflicted by wintertime's snow drifts in the Toquima Range, remnants of their abandoned excavations may be visible just up slope from a prominent bed of whitish-brown quartzite interbedded in the section. The quartzite layer is called a key marker bed by stratigraphers, because it conveniently separates the lower member of the Vinini Formation from the upper member. All of the rich graptolite horizons in the vicinity of Graptolite Summit occur within a rather restricted interval of shaley siltstones and shales some 400 to 600 feet thick, a productive section that happens to straddle that massive, distinctive bed of quartzite. In general, rocks to the southeast of the quartzite marker bed are younger than those to the northwest, but the fact remains that most of the shales and siltstones that sandwich the quartzite horizon yield rare to abundant graptolite specimens.

The most efficient way to find graptolites here is to remove sizable chunks of the varicolored to black shaley siltstones, then carefully split the rocks along their natural bedding planes (remember to wear protective eye gear). In doing this, most collectors soon realize the despite such a prominent presence of graptolites in the rocks, the fossils are sometimes difficult to spot on the fine-grained matrix, a number of them appearing as small silvery sheens on the surface of the shales. Do not become discouraged. What you have discovered is what graptolite specialists have known for ages--that the vast majority of specimens project to the unaided eye what has become known as a "traditional graptolitic aspect of preservation." That silvery sheen found glinting out at you when the sunlight strikes the surface of the rocks at just the right angle represents a 475-million-year-old graptolite colony whose original skeleton has been compressed through geologic time. Most specimens range anywhere from a quarter to an inch and a half in length and, depending of course on the particular genera of graptolites unearthed, can present a fascinating variety of distinctive shapes and sizes to study. Phyllograptus graptolites, for example, one of the more obvious types found near Petes Summit, grew, oval, roughly football-shaped colonies a little over a half inch long. Also present are the blade-like Orthograptus and Climacograptus, plus wishbone-shaped Didymograptus and slingshot-like Dicranograptus. Other genera available in the Graptolite Summit rocks include Clonograptus, Tetragraptus, Isograptus, Glyptograptus, Dicellograptus, Paraglossograptus, Pterograptus, Amplexograptus, Durangograptus, Callograptus and Cardiograptus.

In addition to the graptolite remains in the Vinini Formation near Graptolite Summit, two other fossil types can be encountered in the shales and siltstones--inarticulate brachiopods and Caryocaris crustaceans. Such remains are far less abundant than the graptolites, though. Collectors interested in finding them would be advised to explore as many of the shale deposits as possible, splitting heaps of the easily separated layers wherever you go. And don't be shy about exploring the little gullies and ravines in the Graptolite Summit district--many graptolites, for example, can be found in the poorly exposed shales and siltstones that seem to hide in the most improbable-appearing areas.

 

 
Click on the images for larger views. Here are two varieties of graptolites from the Middle Ordovician Vinini Formation exposed near Graptolite Summit, Nevada. At left is a dendroid-type graptolite, 15mm long, called Callograptus sp.; at right is the slingshot-like graptolite called Dicranograptus spinifer Elles and Wood, 22mm long, which has been naturally preserved with an unusual reddish coloration, presumably through replacement by the mineral limonite.

Graptolites first appear in the geologic record during the middle stages of the Cambrian Period, some 505 million years ago. Even though they persisted all the way up to the late Mississippian age, or roughly 325 million years ago, most species of graptolites had already become extinct by the latest Devonian Period 35 million years earlier. Graptolites achieved their highest degree of success during the Ordovician Period, when they attained worldwide distribution by adapting with ingenuity to three distinct modes of life. One order of graptolite, for example--the fan to leaf-shaped dendroids--led a sessile life attached to the sea floor, apparently straining the marine waters for microscopic organisms. Another type developed a special flotation device which allowed the graptolite colony, termed a rhabdosome, to drift in the open ocean; and a third kind solved its own planktonic challenge by attaching itself to floating strands of seaweed to hitch a free ride through the open ocean in search of better feeding grounds; presumably it too strained the sea waters for microscopic particles of food.

In all three examples of graptolitic adaption, the actual colonial animal lived inside the minute rows of cups called thecae that developed along each individual segment of the rhabdosome; technically, these segments are called a stipe. The tiny saw-tooth compartments that housed the graptolite animals along the stipe show to best advantage under magnifications of ten or more power. Thus, a good-quality hand lens is indispensable in order to gain a detailed and aesthetic appreciation of your finds.

The exact zoological classification of graptolites has presented a serious challenge to paleontologists. Early investigators referred graptolites to such disparate groups as coelenterates or bryozoans; yet, there certainly was no unanimity of opinion among fossil specialists throughout the 19th century. The breakthrough came when some perfect, three dimensional specimens were etched out of cherts using powerful brews of acids around 1948. Paleontologists then realized that the graptolite colony most closely resembled the modern pterobranch, a tiny marine hemichordate, which by definition is a primitive chordate whose notochord (a spine-like notch) is restricted to the basal part of the head.

That explanation seemed to satisfy most paleontologists. Even the basic idea that the graptolite was an extinct colonial organism went completely unchallenged until 1989 when Noel Dilly, a marine biologist in London, suggested that the graptolite had not died out, that a single species had survived the Paleozoic Era and was alive and well on Earth today.

What Dilly had identified was a dime-sized colony dredged up by a French team from 800 feet off of New Caledonia in the South Pacific. Dilly called it Cephalodiscus graptiloides--the sole surviving member of the graptolitic race, he claimed. Dilly, who published his ideas in the Journal of Zoology a number of years ago, also reported that while on vacation he actually witnessed his "living graptolites" cavorting in the warm, shallow waters off the coast of Bermuda. He speculates that his living fossils are "survivors of the main group who hung on in places where there hasn't been massive change in the environment in over 300 million years."

The suggestion is a novelty, at best. By Dilly's own admission the chemical structure of the graptolite rhabdosome and that of his living fossil is only "similar," not identical. What generated most of the early enthusiasm for the theory was that his Cephalodiscus apparently possesses an extended spine-like protrusion from the main colony, a structure similar to what paleontologists call a nema on fossil graptolites. Modern pterobranchs, with which the graptolite is most often compared, do not develop such a needle-like projection, or nema, so the recent identification of a colonial hemichordate that does seem to bear a nema created quite a short-lived stir among paleontologists. One of the main problems with the entire concept is that Dilly's Cephalodiscus graptiloides is not the only species in its genus, and it's the only one to produce a nema--a structure which may not be directly analogous to the structures graptolites developed.

 

 
Click on the images for larger views. Here are two varieties of graptolites from the Middle Ordovician Vinini Formation near Graptolite Summit, Nevada: at left is a Climacograptus sp. graptolite, 33mm long; at right are several thread-like Clonograptus flexilis (J. Hall) graptolites, the longest of which is 20mm.

After collecting graptolites near Graptolite Summit, visitors will want to visit the spectacular fossil exposures of the Antelope Valley Limestone at Ordovician Canyon in the Toquima Range. Here, the Middle Ordovician Antelope Valley Limestone is roughly 950 feet thick, yielding prodigious numbers of fossilized shelly creatures. The productive limestone layers near the mouth of the canyon (referred to as the Mill Canyon Sequence by geologists; two miles from the mouth, geologists call the strata the June Canyon Sequence) consist principally of silty to finely crystalline limestones that weather into shades of dark gray, medium gray, grayish orange, grayish yellow, yellow gray, brownish orange and yellowish orange. The most fossiliferous exposures occur northeast of the mouth of Ordovician Canyon, but productive horizons can be discovered through the canyon corridor up to two to two and a half miles west of the mouth.

 

 
Click on the images for larger views. At left is the view looking westward from the mouth of Ordovician Canyon, Nevada, to the distinctive, bold outcrops of the fossil-bearing Middle Ordovician Antelope Valley Limestone; at right, a collector (faintly visible at middle right of image) prospects the talus slopes just north of the mouth of Ordovician Canyon for Middle Ordovician invertebrate fossils in the Antelope Valley Limestone.

Click on the image below for a larger view. Here is a slab of shaley limestone from the Middle Ordovician Antelope Valley Limestone, Ordovician Canyon, Nevada, which bears several silicified pedicle valves of the brachiopod Plectorthis cf. P. perplexus (Ross); all of the specimens are roughly 10mm across.

Many collectors like to concentrate their attention along the moderate talus slopes immediately north of the mouth. Here can be found infrequent to relatively common brachiopods and gastropods, in addition to abundant cystoid echinoderm debris, or small crinoid-like ossicles whose precise identification is impossible owing to the fragmentary nature of the material. Since these easily accessible exposures have been probed by eager collectors for decades, the richest limestone layers, those yielding the greatest diversity and abundance of specimens, can now be found only in the rugged terrain farther north of the road. In this area the Antelope Valley Limestone is more reliably fossiliferous, yielding a genuinely remarkable assemblage of nicely preserved remains--all of them thoroughly silicified, by the way, replaced by silicon dioxide. Such a style of preservation means that collectors can immerse the fossiliferous calcium carbonate matrix in a diluted acid batch, dissolving away the limestones to leave intact, perfect specimens in the residues.

Click on the image below for a larger view. The prominent outcrops of the Middle Ordovician Antelope Valley Limestone immediately north of the mouth of Ordovician Canyon, Nevada, yield common to abundant silicified invertebrate fossils, including brachiopods (arguably the most common fossil type encountered), echinoderm debris, trilobites, sponges, ostracodes, conodonts, bryozoans, pelecypods, cephalopods and gastropods.

In addition to brachiopods, gastropods and cystoid echinoderms, other specimens identified from the Antelope Valley Limestone include ostracodes, trilobites, conodonts (acetic acid must be used to dissolve out the phosphatic conodont elements), cephalopods, sponges, pelecypods and bryozoans. Most of the fossil groups appear to occur within distinct and separate zones within the Antelope Valley Limestone. Some of the protruding limestone ledges, for example, yield many ostracodes, while others bear plentiful trilobite fragments, brachiopods, sponges, gastropods, or cephalopods. Conodonts, on the other hand, may show up in the residues of limestones collected throughout the entire thickness of the formation, appearing as minute (only one to three millimeters in length, or less than an eighth of an inch) tooth-like specimens that originally served as a unique feeding apparatus of an early, primitive eel-like chordate.

The Toquima Range localities offer collectors a superlative selection of well preserved Middle Ordovician fossil specimens some 475 million years old. Along with several specific localities in Utah, Ordovician Canyon may well be one of the most fossiliferous Ordovician sections in all the Great Basin. Add to that the profusion of fascinating graptolites near Graptolite Summit and you have an extensive fossil field that begs to be explored--preferably during mid Spring through early Fall when the weather conditions most reliably favor a comfortable experience.

Both Toquima Range fossil localities lie within a designated United States national forest. This means that they are administered by the United States Forest Service, not the Bureau of Land Management, even though the sites occur on public lands. In the past, hobby fossil collecting has been allowed to go on here without the need of a special use permit. Just to be on the safe side, though, you might want to contact the local Forest Service office before any visit is made to the Toquima Range.

Everyone's Invited To Visit My Other Web Sites

  • The Acoustic Guitar Solitaire Of Inyo: A Cyber-CD: Listen to me play 30 covers of some of my favorite songs on an acoustic 6-string guitar; it's all free music.
  • Beyond The Timberline--A Cyber-CD: Listen to me play 32 selections comprised of covers and original tunes on acoustic 6 and 12-string guitars; it's all free music.
  • The Distant Path--A Cyber-CD: Listen to me play 32 acoustic guitar covers and original compositions; it's all free music.
  • Inyo And Folks--A Musical History--A Cyber-CD: My parents and I play 35 covers and an original song; it's all free music.
  • Acoustic Stratigraphy--A Cyber-CD: Listen to me play 34 covers of some of my favorite songs on 6 and 12-string guitars; it's all free music.
  • Back To Badwater--A Cyber-CD: Listen to me play 32 covers and original compositions on 6 and 12-string guitars; it's all free music.
  • For an all-text page that includes all 227 of my guitar mp3 files placed on the Internet, go to All Inyo All The Time. That's where you'll find access to all of my musical selections, in order of their appearance on the Web--from my first Cyber-CD ("The Acoustic Guitar Solitaire Of Inyo") to the last, "Inyo 7" (never placed on the Net as a stand-alone Cyber-CD).

Paleontology-Related Pages

Web sites I have created pertaining to fossils

  • Fossils In Death Valley National Park: A site dedicated to the paleontology, geology, and natural wonders of Death Valley National Park; lots of on-site photographs of scenic localities within the park; images of fossils specimens; links to many virtual field trips of fossil-bearing interest.
  • Fossil Insects And Vertebrates On The Mojave Desert, California: Journey to two world-famous fossil sites in the middle Miocene Barstow Formation: one locality yields upwards of 50 species of fully three-dimensional, silicified freshwater insects, arachnids, and crustaceans that can be dissolved free and intact from calcareous concretions; a second Barstow Formation district provides vertebrate paleontologists with one of the greatest concentrations of Miocene mammal fossils yet recovered from North America--it's the type locality for the Bartovian State of the Miocene Epoch, 15.9 to 12.5 million years ago, with which all geologically time-equivalent rocks in North American are compared.
  • Fossils At Red Rock Canyon State Park, California: Visit wildly colorful Red Rock Canyon State Park on California's northern Mojave Desert, approximately 130 miles north of Los Angeles--scene of innumerable Hollywood film productions and commercials over the years--where the Middle to Late Miocene (13 to 7 million years old) Dove Spring Formation, along with a classic deposit of petrified woods, yields one of the great terrestrial, land-deposited Miocene vertebrate fossil faunas in all the western United States.
  • Fossil Plants Of The Ione Basin, California: Head to Amador County in the western foothills of California's Sierra Nevada to explore the fossil leaf-bearing Middle Eocene Ione Formation of the Ione Basin. This is a completely undescribed fossil flora from a geologically fascinating district that produces not only paleobotanically invaluable suites of fossil leaves, but also world-renowned commercial deposits of silica sand, high-grade kaolinite clay and the extraordinarily rare Montan Wax-rich lignites (a type of low grade coal).
  • Trilobites In The Marble Mountains, Mojave Desert, California: Take a trip to the place that first inspired my life-long fascination and interest in fossils--the classic trilobite quarry in the Lower Cambrian Latham Shale, in the Marble Mountains of California's Mojave Desert. It's a special place, now included in the rather recently established Trilobite Wilderness, where some 21 species of ancient plants and animals have been found--including trilobites, an echinoderm, a coelenterate, mollusks, blue-green algae and brachiopods.
  • A Visit To Ammonite Canyon, Nevada: Explore one of the best-exposed, most complete fossiliferous marine late Triassic through early Jurassic geologic sections in the world--a place where the important end-time Triassic mass extinction has been preserved in the paleontological record. Lots of key species of ammonites, brachiopods, corals, gastropods and pelecypods.
  • Late Triassic Ichthyosaur And Invertebrate Fossils In Nevada: Journey to two classic, world-famous fossil localities in the Upper Triassic Luning Formation of Nevada--Berlin-Ichthyosaur State Park and Coral Reef Canyon. At Berlin-Ichthyosaur, observe in-situ the remains of several gigantic ichthyosaur skeletons preserved in a fossil quarry; then head out into the hills, outside the state park, to find plentiful pelecypods, gastropods, brachiopods and ammonoids. At Coral Reef Canyon, find an amazing abundance of corals, sponges, brachiopods, echinoids (sea urchins), pelecypods, gastropods, belemnites and ammonoids.
  • Fossils From The Kettleman Hills, California: Visit one of California's premiere Pliocene-age (approximately 4.5 to 2.0 million years old) fossil localities--the Kettleman Hills, which lie along the western edge of California's Great Central Valley northwest of Bakersfield. This is where innumerable sand dollars, pectens, oysters, gastropods, "bulbous fish growths" and pelecypods occur in the Etchegoin, San Joaquin and Tulare Formations.
  • Field Trip To The Kettleman Hills Fossil District, California: Take a virtual field trip to a classic site on the western side of California's Great Central Valley, roughly 80 miles northwest of Bakersfield, where several Pliocene-age (roughly 4.5 to 2 million years old) geologic rock formations yield a wealth of diverse, abundant fossil material--sand dollars, scallop shells, oysters, gastropods and "bulbous fish growths" (fossil bony tumors--found nowhere else, save the Kettleman Hills), among many other paleontological remains.
  • A Visit To The Sharktooth Hill Bone Bed, Southern California: Travel to the dusty hills near Bakersfield, California, along the eastern side of the Great Central Valley in the western foothills of the Sierra Nevada, to explore the world-famous Sharktooth Hill Bone Bed, a Middle Miocene marine deposit some 16 to 15 million years old that yields over a hundred species of sharks, rays, bony fishes, and sea mammals from a geologic rock formation called the Round Mountain Silt Member of the Temblor Formation; this is the most prolific marine, vertebrate fossil-bearing Middle Miocene deposit in the world.
  • Middle Triassic Ammonoids From Nevada: Travel to a world-famous fossil locality in the Great Basin Desert of Nevada, a specific place that yields some 41 species of ammonoids, in addition to five species of pelecypods and four varieties of belemnites from the Middle Triassic Prida Formation, which is roughly 235 million years old; many paleontologists consider this specific site the single best Middle Triassic, late Anisian Stage ammonoid locality in the world. All told, the Prida Formation yields 68 species of ammonoids spanning the entire Middle Triassic age, or roughly 241 to 227 million years ago.
  • Fossil Bones In The Coso Range, Inyo County, California: Visit the Coso Range Wilderness, west of Death Valley National Park at the southern end of California's Owens Valley, where vertebrate fossils some 4.8 to 3.0 million years old can be observed in the Pliocene-age Coso Formation: It's a paleontologically significant place that yields many species of mammals, including the remains of Equus simplicidens, the Hagerman Horse, named for its spectacular occurrences at Hagerman Fossil Beds National Monument in Idaho; Equus simplicidens is considered the earliest known member of the genus Equus, which includes the modern horse and all other equids.
  • Fossil Plants At Aldrich Hill, Western Nevada: Take a field trip to western Nevada, in the vicinity of Yerington, to famous Aldrich Hill, where one can collect some 35 species of ancient plants--leaves, seeds and twigs--from the Middle Miocene Aldirch Station Formation, roughly 12 to 13 million years old. Find the leaves of evergreen live oak, willow, and Catalina Ironwood (which today is restricted in its natural habitat solely to the Channel Islands off the coast of Southern California), among others, plus the seeds of many kinds of conifers, including spruce; expect to find the twigs of Giant Sequoias, too.
  • Fossils From Pleistocene Lake Manix, California: Explore the badlands of the Manix Lake Beds on California's Mojave Desert, an Upper Pleistocene deposit that produces abundant fossil remains from the silts and sands left behind by a great fresh water lake, roughly 350,000 to 19,000 years old--the Manix Beds yield many species of fresh water mollusks (gastropods and pelecypods), skeletal elements from fish (the Tui Mojave Chub and Three-Spine Stickleback), plus roughly 50 species of mammals and birds, many of which can also be found in the incredible, world-famous La Brea Tar Pits of Los Angeles.
  • Field Trip To Pleistocene Lake Manix, California: Go on a virtual field trip to the classic, fossiliferous badlands carved in the Upper Pleistocene Manix Formation, Mojave Desert, California. It's a special place that yields beaucoup fossil remains, including fresh water mollusks, fish (the Mojave Tui Chub), birds and mammals.
  • Trilobites In The Nopah Range, Inyo County, California: Travel to a locality well outside the boundaries of Death Valley National Park to collect trilobites in the Lower Cambrian Pyramid Shale Member of the Carrara Formation.
  • Ammonoids At Union Wash, California: Explore ammonoid-rich Union Wash near Lone Pine, California, in the shadows of Mount Whitney, the highest point in the contiguous United States. Union Wash is a ne plus ultra place to find Early Triassic ammonoids in California. The extinct cephalopods occur in abundance in the Lower Triassic Union Wash Formation, with the dramatic back-drop of the glacier-gouged Sierra Nevada skyline in view to the immediate west.
  • A Visit To The Fossil Beds At Union Wash, Inyo County California: A virtual field trip to the fabulous ammonoid accumulations in the Lower Triassic Union Wash Formation, Inyo County, California--situated in the shadows of Mount Whitney, the highest point in the contiguous United States.
  • Ordovician Fossils At The Great Beatty Mudmound, Nevada: Visit a classic 475-million-year-old fossil locality in the vicinity of Beatty, Nevada, only a few miles east of Death Valley National Park; here, the fossils occur in the Middle Ordovician Antelope Valley Limestone at a prominent Mudmound/Biohern. Lots of fossils can be found there, including silicified brachiopods, trilobites, nautiloids, echinoderms, bryozoans, ostracodes and conodonts.
  • Paleobotanical Field Trip To The Sailor Flat Hydraulic Gold Mine, California: Journey on a day of paleobotanical discovery with the FarWest Science Foundation to the western foothills of the Sierra Nevada--to famous Sailor Flat, an abandoned hydraulic gold mine of the mid to late 1800s, where members of the foundation collect fossil leaves from the "chocolate" shales of the Middle Eocene auriferous gravels; all significant specimens go to the archival paleobotanical collections at the University California Museum Of Paleontology in Berkeley.
  • Early Cambrian Fossils In Western Nevada: Explore a 518-million-year-old fossil locality several miles north of Death Valley National Park, in Esmeralda County, Nevada, where the Lower Cambrian Harkless Formation yields the largest single assemblage of Early Cambrian trilobites yet described from a specific fossil locality in North America; the locality also yields archeocyathids (an extinct sponge), plus salterella (the "ice-cream cone fossil"--an extinct conical animal placed into its own unique phylum, called Agmata), brachiopods and invertebrate tracks and trails.
  • Fossil Leaves And Seeds In West-Central Nevada: Take a field trip to the Middlegate Hills area in west-central Nevada. It's a place where the Middle Miocene Middlegate Formation provides paleobotany enthusiasts with some 64 species of fossil plant remains, including the leaves of evergreen live oak, tanbark oak, bigleaf maple, and paper birch--plus the twigs of giant sequoias and the winged seeds from a spruce.
  • Ordovician Fossils In The Toquima Range, Nevada: Explore the Toquima Range in central Nevada--a locality that yields abundant graptolites in the Lower to Middle Ordovician Vinini Formation, plus a diverse fauna of brachiopods, sponges, bryozoans, echinoderms and ostracodes from the Middle Ordovician Antelope Valley Limestone.
  • Fossil Plants In The Dead Camel Range, Nevada: Visit a remote site in the vicinity of Fallon, Nevada, where the Middle Miocene Desert Peak Formation provides paleobotany enthusiasts with 22 species of nicely preserved leaves from a variety of deciduous trees and evergreen live oaks, in addition to samaras (winged seeds), needles and twigs from several types of conifers.
  • Early Triassic Ammonoid Fossils In Nevada: Visit the two remote localities in Nevada that yield abundant, well-preserved ammonoids in the Lower Triassic Thaynes Formation, some 240 million years old--one of the sites just happens to be the single finest Early Triassic ammonoid locality in North America.
  • Fossil Plants At Buffalo Canyon, Nevada: Explore the wilds of west-central Nevada, a number of miles from Fallon, where the Middle Miocene Buffalo Canyon Formation yields to seekers of paleontology some 54 species of deciduous and coniferous varieties of 15-million-year-old leaves, seeds and twigs from such varieties as spruce, fir, pine, ash, maple, zelkova, willow and evergreen live oak
  • High Inyo Mountains Fossils, California: Take a ride to the crest of the High Inyo Mountains to find abundant ammonoids and pelecypods--plus, some shark teeth and terrestrial plants in the Upper Mississippian Chainman Shale, roughly 325 million years old.
  • Field Trip To The Copper Basin Fossil Flora, Nevada: Visit a remote region in Nevada, where the Late Eocene Dead Horse Tuff provides seekers of paleobotany with some 42 species of ancient plants, roughly 39 to 40 million years old, including the leaves of alder, tanbark oak, Oregon grape and sassafras.
  • Fossil Plants And Insects At Bull Run, Nevada: Head into the deep backcountry of Nevada to collect fossils from the famous Late Eocene Chicken Creek Formation, which yields, in addition to abundant fossil fly larvae, a paleobotanically wonderful association of winged seeds and fascicles (bundles of needles) from many species of conifers, including fir, pine, spruce, larch, hemlock and cypress. The plants are some 37 million old and represent an essentially pure montane conifer forest, one of the very few such fossil occurrences in the Tertiary Period of the United States.
  • A Visit To The Early Cambrian Waucoba Spring Geologic Section, California: Journey to the northwestern sector of Death Valley National Park to explore the classic, world-famous Waucoba Spring Early Cambrian geologic section, first described by the pioneering paleontologist C.D. Walcott in the late 1800s; surprisingly well preserved 540-million-year-old remains of trilobites, invertebrate tracks and trails, Girvanella algal oncolites and archeocyathids (an extinct variety of sponge) can be observed in situ.
  • Fossils From The Savage Canyon Formation, Nevada: Images of fossil plants and an insect from a classic Middle Miocene geologic rock formation in Nevada.
  • Petrified Wood From The Shinarump Conglomerate: An image of a chunk of petrified wood I collected from the Upper Triassic Shinarump Conglomerate, outside of Dinosaur National Monument, Colorado.
  • Fossil Giant Sequoia Foliage From Nevada: Images of the youngest fossil foliage from a giant sequoia ever discovered in the geologic record--the specimen is Lower Pliocene in geologic age, around 5 million years old.
  • Some Favorite Fossil Brachiopods Of Mine: Images of several fossil brachiopods I have collected over the years from Paleozoic, Mesozoic and Cenozoic-age rocks.

United States Geological Survey Papers (Public Domain)

Online versions of USGS publications

E-Mail: Waucoba4@aol.com

Return To Fossils In Death Valley National Park